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Introduction 

 Long-term living resource monitoring programs are commonly conducted globally to 

evaluate trends and impacts of environmental change and management actions.  For example, the 

Woods Hole bottom trawl survey has been conducted since 1963 providing critical information 

on the biology and distribution of finfish and shellfish in the North Atlantic (Despres-Patango et 

al. 1988).  Similarly in the Chesapeake Bay, the Maryland Department of Natural Resources 

(MDNR) Summer Blue Crab Trawl survey has been conducted continuously since 1977 

providing management-relevant information on the abundance of this important commercial and 

recreational species.  A key component of monitoring program design is standardization of 

methods over time to allow for a continuous, unbiased data set.  However, complete 

standardization is not always possible where multiple vessels, captains, and crews are required to 

cover large geographic areas (Tyson et al. 2006).  Of equal issue is technological advancement of 

gear which serves to increase capture efficiency or ease of use.   Thus, to maintain consistency 

and facilitate interpretation of reported data in long-term datasets, it is imperative to understand 

and quantify the impacts of changes in gear and vessels on catch per unit of effort (CPUE).  

  

 While vessel changes are inevitable due to ageing fleets and other factors, gear changes 

often reflect a decision to exploit technological advances.  A prime example of this is the otter 

trawl, a common tool for fisheries monitoring and research worldwide.  Historically, trawl nets 

were constructed of natural materials such as cotton and linen. However modern net construction 

consists of synthetic materials such as polyamide, polyester, polyethylene, and polypropylene 

(Nielson et. al. 1983).   Over the past several decades, polyamide materials which will be 

referred to as nylon, has been a standard material used in otter trawl construction.  These trawls 
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are typically dipped into a latex coating for increased abrasion resistance, a process that is 

referred to as “green dipped.” 

 

More recently, polyethylene netting has become popular among living resource 

monitoring agencies.  Polyethylene netting, commonly known as sapphire netting, consists of 

braided filaments that form a very durable material more resistant to abrasion than nylon.  

Additionally, sapphire netting allows for stronger knot strength during construction of the net 

further increasing the net’s durability and longevity.  Also, sapphire absorbs less water with a 

specific gravity  near 0.91 allowing the material to float as compared to nylon with specific 

gravity of 1.14 (Nielson et. al. 1983).  This same property results in a light weight net which is 

more efficient in deployment, retrieval and fishing of the net, particularly when towing from 

small vessels.  While there are many advantages to the sapphire netting, no comparative 

efficiency data is available for these two trawl net types.  

 

 Traditional nylon netting has been used consistently for decades by the MDDNR to 

generate long term living resource data sets of great value.  However, there is much interest in 

switching to the advanced materials.  In addition, recent collaborative efforts between MDNR 

and NOAA’s Cooperative Oxford Laboratory (NOAA-COL) require using different vessels for 

trawling in support of joint projects.  In order to continue collaborative programs, or change to 

more innovative netting materials, the influence of these changes must be demonstrated to be 

negligible or correction factors determined.  Thus, the objective of this study was to examine the 

influence of trawl net type, vessel type, and their interaction on capture efficiency. 
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Methods 

Study location and design   

Sampling was conducted in July of 2009 and 2010 on the Corsica River, a major tributary 

of the Chester River, located on the upper Chesapeake Bay.  A random stratified design was 

employed, dividing the river into three equal sections by river mile.  This design divided the 

Corsica into an upper and lower section, with a third section outside the Corsica on the main 

stem of the Chester River (Figure 1). In total, 24 random stations were sampled. Twelve stations 

were randomly sampled on each sampling date with four stations sampled in each of the three 

sections. 

 

Two vessels were used in the study.  The MDNR Blue Crab and Finfish Summer Trawl 

Survey used a 2004, 7.32 m Privateer, a fiberglass vessel outfitted with a forward cabin and a 

225hp Evinrude Etech outboard mounted on an engine bracket. The MDNR vessel was outfitted 

with a 1.22 m “A Frame” for towing operations.  Tow line attachment to the MDNR vessel was 

at the top of the “A Frame” approximately 1.22 m above the surface of the water. NOAA-COL 

used a 2003 7.01 m Parker, a fiberglass center console vessel outfitted with a 200hp four-stroke 

Yamaha outboard mounted without a motor bracket.  The NOAA vessel lacks an “A Frame” 

hence the tow line was attached to transom eyes mounted on the stern of the vessel 

approximately 0.3 m above the surface of the water. 

 

Each vessel towed one trawl using a parallel haul method as described by Revill et al. 

(2006).  Trawls were towed for 6 minutes at 2.0 mph in a straight line 0.32 km transect directly 

into and against the direction of the tidal current.  A random generation of left versus right side 
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was determined for each vessel for each station transect.  Both vessels towed two times for each 

net material type for a total of four random stations in each river section.  Deployment of the 

trawls started simultaneously between both vessels once on station and when both vessels were 

in a position directly parallel to each other approximately 6 m apart.  Trawls were manually 

deployed and retrieved consistently off of the same side of the vessel.  Trawls were excluded and 

a duplicate was conducted at any station in which an obstruction was collected in the net that 

could potentially impact the ability of the trawl to fish correctly. 

 

Otter Trawl Specifications 

A 4.9 m semi-balloon bottom otter trawl (see Rupp and DeRoche (1960) for gear 

description) was towed by each vessel at each site. Trawl specifications were identical for each 

trawl except for net material type (Nylon vs. Saphire).  Head ropes consisted of 5.18 m of 0.95 

cm diameter rope with six sponge floats evenly spaced.  Footropes consisted of 6.4 m of 0.95 cm 

diameter rope with 0.48 cm chain stretched along its length tied at 15.24 cm intervals.  The body 

of the trawls consisted of either nylon or sapphire netting with 3.81 cm stretch and 1.91 cm bar 

mesh tied with No. 9 thread.  Cod-ends consisted of 3.175 cm stretch, 1.59 cm bar mesh tied 

with No. 25 thread composing external chafing gear.  An inside liner of 1.27 cm stretch, 0.64 cm 

bar tied with No. 63 thread was in place for sample collection.  The trawl components were also 

identical.  Trawls were opened by 31.75 cm x 50.8 cm otter doors outfitted with 0.79 cm 

shackles and 4.88 m of 0.635 cm tickler chain spread between the doors.  Each door was linked 

to a bridle by a 5.18 m x 0.95 cm rope and then pulled by 30.48 m x 0.95 cm tow line. 
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Statistical Analysis 

All catch and species richness data was log (CPUE+1) transformed prior to analysis to 

homogenize variances.  Multi-way ANOVA was applied to species richness, and total fish, total 

crabs, white perch, juvenile white perch and juvenile blue crab abundances.  The juveniles of fish 

and crustaceans were analyzed independently in order to examine size selectivity of the gear for 

these most abundant life stages.  Main effects included in the analysis were sampling date, net 

type, vessel, and net x vessel interaction.  Subsequent least square means (LS-means) 

comparisons were conducted when appropriate using Tukey’s adjustment (SAS, LS Means, Pdiff 

option).   

 

Results  

  

 Both trawls and vessels performed similarly in terms of total fish captured with sampling 

event (Date) explaining the majority of the variance (Table 1).  Total CPUE was twice as high in 

2010 (315.42 ± 36.63) than in 2009 (155.5 ± 18.53) (Figure 2).  Similarly, total crab CPUE did 

not differ between gear, vessel, or sampling event (Table 2, Figure 3).  Overall, an average of 

20.52 ± 2.96 crabs were capture per tow with only two tows resulting in zero catch.   The 

richness of organisms captured was also examined to evaluate gear selectivity.  Again, no 

significant differences were noted in the number of species captured between trawl types, 

vessels, and sampling days (Table 3, Figure 4).  However, the number of species captured was 

relatively low (3.19 ± 0.20).  White perch were the most abundant and evenly distributed fish 

available in the river where we conducted this study and we analyzed this species independently 

as an appropriate marker for capture efficiency.   While the MANOVA did not detect an overall 
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significant effect on white perch CPUE (4,43 df, f = 2.05 p = 0.10), there was evidence of a 

marginal boat effect (1,47 df, f = 4.19 p = 0.05) (Table 5).  The MDNR Privateer averaged 

172.17 ± 17.26 white perch per trawl in comparison to 130.75 ± 18.41 for the NOAA Parker 

(Figure 6).  Finally, we separated young-of-the-year (YOY) blue crabs and white perch to 

determine if either trawl or vessel was biased in terms of size selectivity.  No bias was detected 

in YOY blue crab CPUE with both vessels and trawls performing equally (Table 4, Figure 5).  

However, sampling day, trawl, and boat x trawl interactions were all significant for juvenile 

white perch (Table 6, Figure 7).  This is driven primarily by an inconsistent catch in 2010 

(Figure 7).  No juvenile white perch were captured in 15 of the 22 tows (68%) in 2010 with equal 

distribution among vessels.  In 2009, juvenile white perch were captured in every trawl.  

  

Discussion 

 

By nature of the method and seasonal frequency, small vessel trawling programs are 

subject to a relatively rapid turnover of vessels, gear, and crew.   For state and federal programs, 

this presents a challenge in maintaining the integrity of long-term data sets.  To address this 

concern, we examined the influence of gear, vessels and their interactions in use by two 

collaborating programs to quantify changes in catch efficiency.  Overall, gear, vessel, and their 

interaction accounted for the vast minority of total variance in comparison to that attributable to 

sampling event.  These results suggest that the respective agencies have the flexibility to switch 

to the more durable and lighter weight Sapphire netting, and continue collaborative efforts from 

multiple vessels without concern for data continuity.  
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Sampling event was consistently the main source of variance.  Total fish captured was 

nearly twice as high in the 2010 sampling event than in 2009 (Figure 2, Table 1).  This is largely 

driven by recruitment variability of fishes and particularly juvenile spot (Leiostomus xanthurus ). 

In 2009, spot were nearly absent compared to an average catch of over 150 per trawl in 2010.  

Maryland DNR Juvenile Finfish Seine Survey catch data shows a similar pattern in Bay-wide 

abundance of spot between 2009 and 2010 as the Bay-wide geometric CPUE of spot was over 6 

times higher in 2010 than in 2009 (Durell 2010).  Additionally, juvenile white perch frequency 

of occurrence was very low in 2010, including 15 stations with zero captures. Spot spawn 

offshore and enter the Chesapeake in the spring, while white perch are semi-anadromous (Murdy 

et. al. 1997).  Hydroclimate factors may have a substantial influence on fish recruitment in 

Chesapeake Bay and affect coastal spawning fish differently than anadromous species as 

described in Wood and Austin’s Chesapeake Bay Anadromous and Shelf-spawning (CBASS) 

recruitment pattern (2009).  The dramatic difference in CPUE between years was consistent 

among vessels and gear eliminating these other sources of variability and providing additional 

support that recruitment variability plays a major role in controlling fish abundance and species 

composition in Chesapeake Bay and tributaries to the Bay. 

 

No significant differences were noted in species diversity or in blue crab abundance.  

This was to be expected as there are only a few species available to the gear during the early 

summer in these locations.  However, all were caught equally by both net types and vessels.  

Blue crab CPUE was not significantly different among vessels and trawls both in total number 

and more specifically for juveniles (Figures 3,5, Tables 2,4).  This is especially encouraging for 

the MDNR Blue Crab Trawl Survey and their decision to switch to the Sapphire netting a few 
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years prior.  Our findings reported here suggest that this sampling decision did not jeopardize the 

continuity of the Blue Crab Trawl Survey time series.   

 

Obstructions and debris in the trawled area is one potential source of error that must be 

accounted for in bottom trawl comparison studies because these factors may negatively influence 

the ability of the doors to open and restrict the net from fishing properly.  In our study, we 

addressed this possible issue by conducting a duplicate tow when obstructions and debris were 

encountered.  Nonetheless, this potential source of error cannot be ruled out completely.  The use 

of acoustic and visual monitoring devices such as side-scanning sonar and underwater cameras 

would be valuable in future efforts for measuring the performance of survey nets to reduce  

obstruction-related sources of error in comparisons (Nielson et al. 1983).   

 

The use of the Sapphire net material provides several key benefits.  The durability and 

strength of Sapphire netting increases the life span of the net thereby minimizing gear 

replacement expenditures.  In addition, the light weight characteristics of sapphire netting 

compared to the water absorbing tendency of nylon netting contribute to ease of deployment and 

handling.  It was also noted in this effort that the sapphire material made it easier for catches to 

be funneled into the cod-end as compared to the nylon material.   

 

In summary, our data suggests the Maryland DNR and NOAA’s Cooperative Oxford 

Laboratory can use both nylon and sapphire netting materials with either vessel in future 

sampling operations with minimal concerns about effects on long-term data consistency with 

realization of both positive economic benefits and increased sampling efficiency. 
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Figure 1 - Map of the Corsica River, Maryland study area. Sampling stations represent start of 

trawl transects. 
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Figure 2 - Total fish captured by nylon (polyamide) and Sapphire (polythylene) net materials by 
vessel and year. 

 
 

 
Fish Abundance         
    DF MSE F P 
Model   4/47 1.96 3.28 0.02 
Error 

 
43/47 0.60 

 
  

  
    

  
  Date 1/47 4.16 6.94 0.01 
  Boat 1/47 1.58 2.63 0.11 
  Net 1/47 0.91 1.51 0.23 
  Boat*Net 1/47 1.21 2.02 0.16 

 
Table 1 - Results of ANOVA comparing variance in total fish captured by date, boat, net, and 
boat by net interaction. Variance in Total Fish Captured with Date, Boat, Net, and Boat Net 

Interactions 
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Figure 3 - Total Blue Crabs caught by nylon (polyamide) and Sapphire (polythylene) netting by 
vessel and year. 

 
 

Blue Crab 
Abundance 

    
  

DF MSE F P 
Model 

 
4/47 0.36 0.22 0.93 

Error 
 

43/47 1.67 
  

      
 

Date 1/47 0.71 0.43 0.52 

 
Boat 1/47 0.00 0.00 0.99 

 
Net 1/47 0.16 0.10 0.76 

 
Boat*Net 1/47 0.58 0.35 0.56 

 
Table 2 - Results of ANOVA comparing variance in total Blue Crabs captured by date, boat, net, 

and boat by net Interaction. 
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Figure 4 - Diversity of species caught by nylon (polyamide) and Sapphire (polyethylene) netting 
compared to vessel and year. 

 
 

Number of Species         
    DF MSE F P 
Model   4/47 0.06 0.55 0.70 
Error 

 
43/47 0.11 

 
  

  
    

  
  Date 1/47 0.05 0.44 0.51 
  Boat 1/47 0.01 0.09 0.76 
  Net 1/47 0.15 1.40 0.25 
  Boat*Net 1/47 0.03 0.28 0.60 

 
Table 3 -  Results of ANOVA comparting variance in species diversity by date, boat, net, and 

boat by net interaction. 
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Figure 5 - Juvenile Blue Crabs (<60mm) caught by nylon (polyamide) and Sapphire 
(polythyelne)  netting compared to year and vessel. 

 
 

YOY blue crabs         
    DF MSE F P 
Model   4/47 0.76 0.70 0.60 
Error 

 
43/47 1.09 

 
  

  
    

  
  Date 1/47 0.30 0.28 0.61 
  Boat 1/47 0.58 0.53 0.47 
  Net 1/47 0.03 0.03 0.86 
  Boat*Net 1/47 2.14 1.96 0.17 

 
Table 4 - ANOVA comparing variance in juvenile Blue Crab captured by date, boat, net, and 

boat by net interaction. 
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Figure 6 - Total White Perch caught by nylon (polyamide) and Sapphire (polyethylene) nets 
compared to year and vessel. 

 
 

Adult White Perch         
    DF MSE F P 
Model   4/47 1.26 2.05 0.10 
Error 

 
43/47 0.61 

 
  

  
    

  
  Date 1/47 0.16 0.27 0.61 
  Boat 1/47 2.57 4.19 0.05 
  Net 1/47 0.43 0.71 0.41 
  Boat*Net 1/47 1.85 3.02 0.09 

 
Table 5 - ANOVA comparing variance in total White Perch captured by date, boat, net, and boat 

by net interaction. 
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Figure 7 -   Juvenile White Perch caught by nylon (polyamide) and Sapphire (polyethylene) nets 
compared to year and vessel. 

 

YOY White Perch         
    DF MSE F P 
Model   4/47 26.21 22.18 <0.01 
Error 

 
43/47 1.18 

 
  

  
    

  
  Date 1/47 91.51 77.44 <0.01 
  Boat 1/47 2.14 1.81 0.19 
  Net 1/47 6.39 5.41 0.02 
  Boat*Net 1/47 4.80 4.07 0.05 

 
Table 6 - ANOVA comparing variance in juvenile White Perch captured by date, boat, net, and 

boat by net interaction. 
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